「技术选型」Keras、TensorFlow和PyTorch的区别
「技术选型」Keras、TensorFlow和PyTorch的区别
原创 首席架构师智库 2020-08-01 21:16:00
数据科学家在深度学习中选择的最顶尖的三个开源库框架是PyTorch、TensorFlow和Keras。Keras是一个用python脚本编写的神经网络库,可以在TensorFlow的顶层执行。它是专门为深度神经网络的鲁棒执行而设计的。TensorFlow是一种在数据流编程和机器学习应用中用于执行多个任务的工具。PyTorch是一个用于自然语言处理的机器学习库。
Keras、TensorFlow和PyTorch的头对头比较(Infographics)
以下是Keras与TensorFlow和Pytorch之间的十大区别:
Keras与TensorFlow与PyTorch的关键区别
下面列出了Keras、TensorFlow和PyTorch的体系结构、函数、编程和各种属性等主要区别。
- API级别:Keras是一种高级的API,可以运行在Theano、CNTK和TensorFlow的顶层,后者因其快速开发和语法简单而受到关注。TensorFlow可以在API的低级别和高级别上工作,而PyTorch只能在API的低级别上工作。
- 框架的架构和性能:Keras的架构简单、简洁、易读,性能低下。TensorFlow是刚性使用,但支持Keras更好的表现。与Keras相比,PyTorch的架构复杂且难以解释。但TensorFlow 和PyTorch 的性能是健壮的,这提供了最大的性能,也提供了在更大的数据集高效率。由于Keras的性能较低,它只适用于较小的数据集。
- 调试过程:一个简单网络的调试是由Keras提供的,这是经常需要的。但是在TensorFlow中,调试是一个非常复杂的过程,而与Keras和TensorFlow相比,PyTorch提供了灵活的调试功能。PyTorch在神经网络中的操作描述了PyCharm、ipdb、PDB等调试工具的有效计算时间。但是当涉及到TensorFlow时,有一个叫做tfdbg的高级选项,它可以通过浏览所有的张量在特定的运行时在会话范围内操作。由于它是用python代码内建的,所以不需要单独使用PDB。TensorFlow在模式上比PyTorch先进,具有比PyTorch和Keras更广泛的群体。
- 框架的适用性。: Keras在小数据集中是首选,它提供了快速原型和扩展的大量后端支持,而TensorFlow在对象检测方面提供了高性能和功能,可以在大数据集中实现。PyTorch具有较强的灵活性和调试能力,可以在最短的数据集训练时间内适应。
- 神经网络框架的性能:PyTorch具有开发递归网络的多层和细胞级类。层的对象管理输入数据和一个单位单元中的一个时间步长,也表示具有双向属性的RNN。因此,由于没有进一步优化的必要,网络的众多层为单元提供了一个合适的包装。TensorFlow由dropout包装器、多个RNN单元和单元级类组成,用于实现深度神经网络。Keras由全连接层、GRU和用于创建递归神经网络的LSTM组成。
Keras与TensorFlow与PyTorch的对比表
以下是TensorFlow和Spark之间的十大区别:
结论
PyTorch简单且用户友好,而TensorFlow由于API不全面而被采用。Keras和TensorFlow有一个坚固的砖墙,但剩下的小孔用于通信,而PyTorch与Python紧密绑定,适用于许多应用程序。
https://m.toutiaocdn.com/i6856003722388963847/?app=news_article×tamp=1596321927&use_new_style=1&req_id=202008020645270100140470730D1429B3&group_id=6856003722388963847&tt_from=android_share&utm_medium=toutiao_android&utm_campaign=client_share