【视频】教程|机器学习基石(台湾大学林轩田)

TensorFlow与机器学习 徐 自远 551℃
电子工程世界 2018-06-29 17:36:24

课时1:Course Introduction

课时2:What is Machine Learning

课时3:Applications of Machine Learning

课时4:Components of Machine Learning

课时5:Machine Learning and Other Fields

课时6:Perceptron Hypothesis Set

课时7:Perceptron Learning Algorithm (PLA)

课时8:Guarantee of PLA

课时9:Non-Separable Data

课时10:Learning with Different Output Space

课时11:Learning with Different Data Label

课时12:Learning with Different Protocol

课时13:Learning with Different Input Space

课时14:Learning is Impossible

课时15:Probability to the Rescue

课时16:Connection to Learning

课时17:Connection to Real Learning

课时18:Recap and Preview

课时19:Effective Number of Lines

课时20:Effective Number of Hypotheses

课时21:Break Point

课时22:Restriction of Break Point

课时23:Bounding Function- Basic Cases

课时24:Bounding Function- Inductive Cases

课时25:A Pictorial Proof

课时26:Definition of VC Dimension

课时27:VC Dimension of Perceptrons

课时28:Physical Intuition of VC Dimension

课时29:Interpreting VC Dimension

课时30:Noise and Probabilistic Target

课时31:Error Measure

课时32:Algorithmic Error Measure

课时33:Weighted Classification

课时34:Linear Regression Problem

课时35:Linear Regression Algorithm

课时36:Generalization Issue

课时37:Linear Regression for Binary Classification

课时38:Logistic Regression Problem

课时39:Logistic Regression Error

课时40:Gradient of Logistic Regression Error

课时41:Gradient Descent

课时42:Linear Models for Binary Classification

课时43:Stochastic Gradient Descent

课时44:Multiclass via Logistic Regression

课时45:Multiclass via Binary Classification

课时46:Quadratic Hypothesis

课时47:Nonlinear Transform

课时48:Price of Nonlinear Transform

课时49:Structured Hypothesis Sets

课时50:What is Overfitting

课时51:The Role of Noise and Data Size

课时52:Deterministic Noise

课时53:Dealing with Overfitting

课时54:Regularized Hypothesis Set

课时55:Weight Decay Regularization

课时56:Regularization and VC Theory

课时57:General Regularizers

课时58:Model Selection Problem

课时59:Validation

课时60:Leave-One-Out Cross Validation

课时61:V-Fold Cross Validation

课时62:Occam-‘s Razor

课时63:Sampling Bias

课时64:Data Snooping

课时65:Power of Three

人工智能是这两年最炙手可热的领域,而机器学习则是人工智能的核心,是使计算机具有智能的根本途径,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。今天为大家推荐一款适合机器学习入门,同时又不失深度的一门教程:由台湾大学林轩田老师主讲的《机器学习基石》。

本课程主要讲述机器学习的必备技能,基础算法、理论及实用工具,同时林轩田老师的讲授技巧也是备受广大学友们的推崇。

视频地址:http://training.eeworld.com.cn/video/13160

教程|机器学习基石(台湾大学林轩田)http://t.jinritoutiao.js.cn/ejMy1C/

转载请注明:徐自远的乱七八糟小站 » 【视频】教程|机器学习基石(台湾大学林轩田)

喜欢 (0)

苏ICP备18041234号-1 bei_an 苏公网安备 32021402001397号