课时3:Applications of Machine Learning
课时4:Components of Machine Learning
课时5:Machine Learning and Other Fields
课时7:Perceptron Learning Algorithm (PLA)
课时10:Learning with Different Output Space
课时11:Learning with Different Data Label
课时12:Learning with Different Protocol
课时13:Learning with Different Input Space
课时15:Probability to the Rescue
课时17:Connection to Real Learning
课时19:Effective Number of Lines
课时20:Effective Number of Hypotheses
课时22:Restriction of Break Point
课时23:Bounding Function- Basic Cases
课时24:Bounding Function- Inductive Cases
课时26:Definition of VC Dimension
课时27:VC Dimension of Perceptrons
课时28:Physical Intuition of VC Dimension
课时29:Interpreting VC Dimension
课时30:Noise and Probabilistic Target
课时32:Algorithmic Error Measure
课时34:Linear Regression Problem
课时35:Linear Regression Algorithm
课时37:Linear Regression for Binary Classification
课时38:Logistic Regression Problem
课时39:Logistic Regression Error
课时40:Gradient of Logistic Regression Error
课时42:Linear Models for Binary Classification
课时43:Stochastic Gradient Descent
课时44:Multiclass via Logistic Regression
课时45:Multiclass via Binary Classification
课时48:Price of Nonlinear Transform
课时49:Structured Hypothesis Sets
课时51:The Role of Noise and Data Size
课时54:Regularized Hypothesis Set
课时55:Weight Decay Regularization
课时56:Regularization and VC Theory
人工智能是这两年最炙手可热的领域,而机器学习则是人工智能的核心,是使计算机具有智能的根本途径,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。今天为大家推荐一款适合机器学习入门,同时又不失深度的一门教程:由台湾大学林轩田老师主讲的《机器学习基石》。
本课程主要讲述机器学习的必备技能,基础算法、理论及实用工具,同时林轩田老师的讲授技巧也是备受广大学友们的推崇。
教程|机器学习基石(台湾大学林轩田)http://t.jinritoutiao.js.cn/ejMy1C/
转载请注明:徐自远的乱七八糟小站 » 【视频】教程|机器学习基石(台湾大学林轩田)